skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McReynolds, Ella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Members of the phylumAcidobacteriotainhabit a wide range of ecosystems including soils. We analysed the global patterns of distribution and habitat preferences of variousAcidobacteriotalineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline and terrestrial non-soil ecosystems) in 248 559 publicly available metagenomic datasets. ClassesTerriglobia,Vicinamibacteria,BlastocatelliaandThermoanaerobaculiawere highly ubiquitous and showed a clear preference to soil over non-soil habitats, while classesAminicenantiaandHolophagaeshowed preferences to non-soil habitats. However, while specific preferences were observed, mostAcidobacteriotalineages were habitat generalists rather than specialists, with genomic and/or metagenomic fragments recovered from soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than the habitat from which the genome was recovered in shaping the genomic characteristics and metabolic capacities of theAcidobacteriota. The observed lack of strong habitat specialization and habitat-transition-driven lineage evolution in theAcidobacteriotasuggest ready cross-colonization between soil and non-soil habitats. We posit that such capacity is key to the successful establishment ofAcidobacteriotaas a major component in soil microbiomes post-ecosystem disturbance events or during pedogenesis. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  2. Abstract Members of the phylum Acidobacteriota inhabit a wide range of ecosystems including soils. We analyzed the global patterns of distribution and habitat preferences of various Acidobacteriota lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline, and terrestrial non-soil ecosystem) in 248,559 publicly available metagenomic datasets. Classes Terriglobia, Vicinamibacteria, Blastocatellia, and Thermoanaerobaculia were highly ubiquitous and showed clear preference to soil over non-soil habitats, class Polarisedimenticolia showed comparable ubiquity and preference between soil and non-soil habitats, while classes Aminicenantia and Holophagae showed preferences to non-soil habitats. However, while specific preferences were observed, most Acidobacteriota lineages were habitat generalists rather than specialists, with genomic and/or metagenomic fragments recovered from soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than the habitat from which the genome was recovered in shaping the genomic characteristics and metabolic capacities of theAcidobacteriota. The observed lack of strong habitat specialization and habitat transition driven lineage evolution in the Acidobacteriota suggest ready cross colonization between soil and non-soil habitats. We posit that such capacity is key to the successful establishment of Acidobacteriota as a major component in soil microbiomes post ecosystem disturbance events or during pedogenesis. 
    more » « less